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-1Teprime factor FFT (PR FFT), developed by Kolba and Parks, makes use of

LLJ rcentcomputational complexity results by Winograd to compute the DFT with a

__j ewernumber of multiplications than that required by the FFT. Patterson and

L- McClellan have derived an expression for the t1SE in the PR FFT assuming te 61
finite precision fixed point arithmetic. In this paper we derive a bound on te~
MS[F in tile PR ITT assuming floating point arithmetic. In the course of the
derivation an expression for the actual MSE is also presented, but is seen to be
too complicated to be of practical use.7 /
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ABSTRACT where y is the input vector and Y is the DFT out-
The prime factor FFT (PF FFT), developed by put. The rectangular matrices A and C correspond

to the input and output stages of the algorithm and
Kolba and Parks, makes use of recent computational
complexity results by Winograd to compute the DFT diagonal and contains the only multiplications in
with a fewer number of multiplications than that the algorithm. As an example, the 3 point DFT may
required by the FFT. Patterson and McClellan have be writn As ,i
derived an expression for the MSE in the PF FFT

assuming finite precision fixed point arithmetic. 0 0OO 1 0 0 F 1 11  7
In this paper we derive a bound on the MSE in the 1 jj
PF FFT assuming floating point arithmetic. In the lY 1 i O.2 0 (2)course of the derivation an expression for the I I 2
actual MSE is also presented, but is seen to be tO Lf0'

complicated to be of practical use. L - O-j I I L3
In this particular example A andC are square, but
this is not generally the case.

I. INTRODUCTION An N-dimensional PF FFT is a cascade of M mod-

Fairly recently a new class of algorithms has ules, each consisting of several of the computa-

emerged for computing the DFT with a fewer number tions given by (I). The PP FIT may be written as
of multiplications than that required by the FFT. X - [CMDMAM,...,ClDIA1Ax (3)
fhe first of these algorithms was developed by
;inograd [1,21 and makes use of his formulation for where "x" denotes a Kronecker prcduct, and x and X
performing convolution wilth the minimum number of are the DFT input and output respectively. It is
multiplications [31. This algorithm has been assumed that the dimension of C D A is N and that
termed the Winograd Fourier transform algorithm m I I

(WFTA) [41. An unnested version of the WFTA has M

'3een proposed by Kolba and Parks and termed the th a tp~rime factor FFT (PF FFT) [51. 1
rTrelatively prime. Thus to compute the DFT accord-

It is of interest to investigate the effects ing to (3), only Nm point DFT's are required.
of finite register length in these new algorithms. Fig. I gives a pictorial representation of (3)
?atterson and McClellan have derived expressions for M-2 modules. Each plane in the figure is a
for the average MSE in both the WFTA and ?F FFT, computation as given by (1). To date,* algorithms
assuming a statistical error model and fixed point c a tin asbien b y o datalgorims
arithmetic !61. In this paper we restrict attention have been published for only four mutually prime

to the PF FFT and derive an expression for the MSE sequence lengths N . Hence, M4 is the maximum

assuming floating point arithmetic. The resulting
expression is quite cumbersome, but a bound on the B. Characterization of Floating Point Errors
MSE is also derived which is relatively easy to We shall be concerned with binary machines
compute. using floating point arithmetic with a double

4 ,precision accumulator. Thus, each machine number
11. PRELIMINARIES b

may be expressed as (sign).a'2 where the mantissa
A F IT Algorithm 'a' is a fraction etween 1 and 1 and the exponent
A one dimensional Winograd type DFT algorithm 2

can be represented in matrix notation as 1b' is an integer. It shall be assumed that B
bits are used for the mantissa and that enough bits

- C( are alloted to the exponent to prevent overflow.

:"This research was sponsored through Princeton
Universitv hv the Air Force Office of Scientific if we let fl(.) denote the machine number re-
Research. USIF under ;rant *-AFOSR-75-3O83 and sulting from a real floating point operation, then

it is well known that [71 for ,ost machines:r u~hth [iers Of ilnols by he .Jon

-ervices Electronics Program.
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elemnt in both G(z) and 6(m) is actually zero.0fl(xy) - (x+Y)(1+61) (4) This follows since the compount of Y e due to -

fl(xob) " (xY) +6 2) is purely real and the component of Y due to Jth

hege o the e an sqared v2-B /2<oSh2-e /2 is purely ieginary so that no error occurs in
8e, whche e sily cptd2  fo adding these two compouetsy

1.B

for rounding and -2a<6v< for truncation. I1. i oATING POi T ERROR BOUND
The errors 1 and 62 are typically modelled as It is desired to bound the average mSE (over

random variables, independent of x and y and uni- all outputs) at the t FFT output. This error re-

formly distributed on their range (7]. The bound sults from computational errors which originate
to be derived in the next section will require withi t each module in (3) and then propagate to the

knowledge of only the mean squared values of the output. It is expedient to consider the effects of
mi , which can be easily computed. For example, the errors from each nodule separately.

esmtng rounding we have for real addition and it is somewhat difficult to picture the i- FFT
multiplicationr 2. 2B for FP2. However, each portion of the computation,
i!nEo6nl T 1 from the rth module to the output, may still be

represented in a manner similar to Fig. 1. Fig. 2
For the remsainder of this paper we shall assume illustrates a particular stage S£(&), whitch is the

rounding arithmetic. transformation from a portion of the mth module

The P? FFT is composed of any short one di- nput to the PF FFT output. The i FFT contai s
mensional OFT's, each implemented as in (1). In NI.NM. 1 of these stages in parallel. Hence, the
the next section we shall require an expression for ineArusfo1toN * N adacsag

the error vector at the output of a single one d to
dimensional DFT. Let y and Y be the respective computes only part of the P F FFT output.
input and desired output of a single Nm point DFT. Cnie h t m pitIF nsaeS~)

Thn -CID~ZR +jm~~Z () Lt h rrra teJhoutput of this DFT. due to
C A errors originating within this T, be defind as

where R and I are the real and imaginary parts 
of ers,.gnt n

y respectively. Denote the actual machine output .
by X. Then the error vector at the DFT output, k .M )

(m)" = y - y, may be written as L (M)

VW() Q(m)1Y + j&(m)y
1 + [G(m)e + jz(m)_Y

1  (6) -1....,(N l"- N-)

where Q(m) is an error matrix associated with a m1'....,
single N point DFT of a real input array. The Then let
error marix Q~m) may be obtained as follows. The
actual output Y, resulting from a real input array, r1. ... NM )

is computed by substituting fl(.) for each multi-
plication and addition occuring in (1). The ith I ss ... ,K
substitution is made with an error source i where e (m)

it is asstmed the (6 are uncorrelated. if desired, A1 . (Ni'"Nm-1)

d kk (l+6) may be substituted for the diagonal ele- m1'....M

ments dkk in D, so that the error due to storage of be the rth output of the sth (N ."' NN) point DFT

the multiplier coefficients is also accounted 
for. in S, (a) due to the g A(m).

All second order effects involving terms of the s r

form 6 6 are dropped from i. The output Y is then We shall first compute

h subtracted, giving y(m) to first order. Each ale- I rar'
! ato Y.)i lna o~nt f t Ar.

ment of (m) ie a linear combination of the which is the average MSE at the PF FFT output due

with coefficients (the entries in Q(m)) given by to errors originating within the rth module. For

linear combinations of the 8 The matrix Q() is fixed A and s it follows from Parseval that

the error matrix associated with an N3 point DPT of EleA(m)12 _A 12

a purely imaginary array. Q(m) has the same form r (N+l'''NN) Elesr( )I
as Q(m), however the elements in these two matrices r r
are assumed to be uncorrelated.since they arise Therefore
from different multiplications. The last term in I Z -Eer 

(m )12  
_ (N ...'"NM)2() (7)

6) ts due to adding the DFT of'. to the OFT of N A r a s

I in '5). Rcth G(m) and Z(m) are diagonal ma- where 2

trices with each element having variance 2 2B/12 . 2(in) r E ( E (MW (8)
A fact which will be neglected is that the first & r s

-t
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is the average MSE at the output of the mth module may be further simplified since
due to errors originating within that module. EixR(m)F m)Fm)xm)}Ejx (m)tF *m)V(m)xR ())

An expression for a2(m) is now required in R* 2
B  

R
terms of the algorithm parameters. To investigate =Etx (m)-(- I xRCm))
the errors occuring within the mth module. (3) is

rewritten using a standard Kronecker product iden- -2B
titv giving (2D-- -- )

x = (CD . (C.Im+A+I)lm .,TYl he second equality follows because F(m) is a diag-

[t'..xt 1<(C D A )x'K I' (9) onal matrix with each element having variance
m+1 m m m m-1 I..2-2B /12. The last term in (13) is equal to a sim-

* X...1m x(Cm_l DMIAMI)... X(CIDIA0 1)x. ilar expression so that the sum of the last two
terms is given by

Similarly X may be written as a product of M a-
trices times x where the ith matrix represents 2-

2 E

the transformation performed by the ith module. 12
In (9) we have broken the computation around the
mth module. The output x(m) of this module may be 2 

2B 
r*

written as 12 (

x(m) " ... "lv1 -(C D A )Y .l< .." 1]x(m-l) 2
Sm m m 1(10) a (m) given by (13) can now be rewritten as

where x(m-1) is the input to the mth module given 2(m) 1 E( MR* (m-)P*Rm)P m)?R-I)
5v x(m-l)-1 +. . . <ImX(C D A Nl) .,. '(C 1DA)IX.

S m m mC I 1- DI -*

It is apparent from (6) and (10) that the error + (m-l)P (m)P(m)x (i-I)

E(m) in Y(m) may be expressed as -2B (14)
It - I R +2 * (x4

f(m) - P(m)x (m-1) + j C(m~x (m-1) + F(m)x (m) +--2 x (m)x(m)) .

+ jF(m)x Ts So far. only errors originating within the mth

where module have been considered. We shall now formu-
late an expression for the total average MSE at the

P(m) [I Q
(
m) Y I IV ... l PF FFT output due to all modules. It may be seen

N I mn I (12) from (11) and (12) that the error vector at the

(m) 4 .. .Im+ 1  (m) V I ml' . .'.l1 s  output of the mth module depends on Q(m) and G(m).

However, Q(m) and C(m) are uncorrelated with Q(i)

!{ere r.I
s s 

indicates that each time Q(m) or G(m) is and d(i) for i 1 m and hence Elm) is uncorrelated

repeated in the Kronecker product, its elements are with f(i). The total average MSE at the PF FFT

superscripted relating them to their respective output is therefore the sum of the average MSE's
CD Am implementation. Without this additional due to each module. From (7) the total average
mDm Am ipeetto.Wtottiadtonl2~MSE 0 is given by

superscript, the 5. arising from one implementation

Sof Cm0A would betassumed to he identical to those - I E E E Eles(m) 2

arising from another implementation. However, m r s

* since the inputs to the various implementations are M-1 M
, ifferent. we shall in fact assume these errors to = [ 2 (m) t N] + 0

2
(M). (15)

be uncorrelated. m-1 i-+l
2

From the definition of E(m), the quantity We may then substitute (14) for a (m), however the
)2,. given by (5) may be written as first two terms in this quantity will be difficult, g n to compute. As an alternative we shall now derive

(m) E (m) . (m) a bound on 2(m) which is much easier to compute

where "*" denotes complex conjugate transpose. than 2 (M) itself.

Substituting from (11) gives The first term in (14) may be bounded as

2 R* * R follows. Letting T P(m)P(m) gives
I M El x' (m-l)P (m)P(mx (m-)

R*a

'x *(m-l)P*(M)P(m)x (m-I) (13) _- -k 't

R* * R ACoession For.
(m m) . arT:S ar all mt x)P(m "' & -I " (m-) Z tkL.(m+ 'l

Sx Cm)? (m)F(m)x (m), PT 1 Z TIl - +mI ,

w.here a[t ross erms are zro and have been omit- k m lk.~~ ~ , , 4 +',P ,, ) P l ) ,F,) a n d F ~ ) a r e l l U n o r -; .1.1 .; ++ + + i ++ .: o , _)
related ard :tero-nean. Mhe Last two terms in (13)

DtStrib.t Io,-,/ _
AvD l~d L ii , Codes

Avail and/or

ID n



F • lm~-

4

REFERENCES
(m-){ k Ix(m'~l [1) S. Winograd, "On computing the discrete

q[-k)2Fourier transform," ?roe. Nat. Acad. Sci. USA,

k k (Vol. 73, pp. 1005-1006, April 1976.

b - r .
(2 S. Wilnograd, "on computrng the discrete

ud i d a1)1
2 
Z i Fourier transform," math. of Computation, Vol.

k 32. pp. 175-199, Jan. 1978.

" E x (ml)2 Z I l, n(m)2 [3 S. Winograd, "So e bi inear o ms " hose ma lt -
n k plcatve complexity deinds on the field o

k ,- constants." IBM T.. Weton Res. Cir., York-
where the second inequality follows, since T is non- town Heights, NY, 10598, Res. Rep. RC5669.

negative definite. and the last inequality follows Oct. 10, 1975.

by Cauchy-Schwartz. The second term in (14) can be [41 . F. Siverman ."An introduction to program-
bounded in an identical fashion giving ming the Winograd Fourier transform algorithm

2 kRm_112 m)1 Wtasfor aoI ths.EEE Trans. Acoust. .pehSga

a f ( t ea p Processing, Vol. ASSP-250 pp. 152-165, Apriln o n t a 1977.

appro(ria)e Z Z Ei P1n(m)12 b5o D. P. Kolbae and TW.iu Parks. "A prime factor
k o er n FFT algorithm using high-speed convolution,"
th u 1EEE Trans. Acoutt., Speech, Signal Processin

SO. -25, -294, Aug. 1977.

12 
(16)

[61 R. W. Patterson and J. H. McClellan, "Fixed-
consider - rE lp (m)1i

2 
in (16). It is ap- point error analysis of Winograd Fourier

Zn transform algorithms." IEEE Trans. Acoust..

parent from (12) that the fatrx P(m) contains the Speech, Signal Processing, Vol. ASSP-26.
elements of Q(m) repeated N/N times, each time pp. 447-455, Oct. 1978.
appropriately superscripted as mentioned before. 171 T. Kaneko and B. Liu, "Accum-ulation of round-

SAll other entries in P(m) are zeroes. Regardless off error in fast Fourier transforms,"
of the superscripts we have that J. Assoc. Comp. Mach. Vol. 17. pp. 637-654,

N - N i N ') Em OmEqiJ m)l 2  
---ct. 1970.

2-1 n-l An(m 1,1 j:1

--2B ? '' •

Using (15), (17), and the fact that Ei ij(mo)le '

nm

i q (m)1
2 

gives eva/!that

2 N k ,n(._Il 2, N NEkCM12
a (m)- .1 E, t - -1lI"

N N

12B N N(m) 12,......

-2 n_

., ~~~~Now, if xn~)i the nth output of the ruth module,, . ,.,...,. ,..,.,

it Eollows from Parseval that .. i

By induction thent[

2 N 2  N _ .... -.. .. / 12

n.i N3  k-I L1.
' ,1 2-28

N 12

where xn - Xn(0) is the nth input to the PP FFT.

Final y, substituting this into (15) gives the
Jesired bound

2 NM 2-2B

T1 n-IN k- I L-1

ILn


